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Understanding the flexibility of network structures is im-
portant for comprehending how such structures react to chang-
ing pressure and temperature as well as intercalation reactions.
Some network structures are highly flexible, whereas others
are rather rigid. Simple modeling approaches can offer some
understanding of this behavior. Rigid tetrahedra can fit together
extremely well in the ideal cubic networks represented by cristo-
balite and sodalite. Significant strain exists in ten other cubic
networks examined. High flexibility is found in networks repre-
sented by the sodalite, analcite, and rho zeolite structures. The
network based on ZrO6 octahedra and PO4 tetrahedra in the
ZrP2O7 structure is rigid in the cubic system, and it becomes less
rigid when the symmetry is reduced to orthorombic, monoclinic,
and triclinic.  1996 Academic Press, Inc.

INTRODUCTION

A. F. Wells is best known for the several editions of
his large book (1). However, his original contributions to
structural inorganic chemistry are debatably better illus-
trated by his smaller books on networks (2–4). One aspect
of networks that he did not consider is their flexibility.
There has been some tendency to view networks as rigid
structures. In fact, some are rather rigid, whereas others
are highly flexible due to the ease of varying certain bond
angles. Cubic MO3 networks based on MO6 octahedra may
be taken as an example. The linking of these octahedra
gives the highly flexible perovskite structure if the cubic
symmetry is relaxed. However, different connectivities of
MO6 octahedra give rigid networks in the case of the pyro-
chlore and cubic KSbO3 structures.

In this paper, we consider the flexibility of cubic net-
works based on corner-sharing tetrahedra or mixed tetra-
hedra–octahedra. Flexibility is first considered in the par-
ent structure, that is, the structure which possesses the
highest symmetry consistent with a particular connectivity.
Then we consider the degree to which flexibility is en-
hanced by removing symmetry elements. This is essentially
the same approach that has been used by Parise et al. (5)

and Baur (6) on a more restricted basis set than presented
here. A crystal mechanics force field approach to zeolite
flexibility has been taken by Deem et al. (7).

MODELING APPROACH

We find that the flexibility of many framework structures
can be well-simulated using DLS, a well-known approach
to refining structures based on prescribed distances (8).
This approach is most suitable for linked semirigid MOx

polyhedra connected by corner sharing only. In this ap-
proach, prescribed M–O distances are given high weights.
The prescribed M–M distances, effectively the M–O–M
bond angles, are given low weights; and the O–O distances,
effectively O–M–O angles, are given intermediate weights.
The DLS approach is not suitable if there is considerable
variation in the M–O bond lengths or M–O–M bond angles
of a given MOx polyhedron. This occurs for example for
VO6 and MoO6 polyhedra. In those cases a DLS variation,
DVLS which allows polyhedra distortions consistent with
bond valence rules, may be used instead (9).

Our method of exploring flexibility of networks involves
determining their reactions to compression or expansion.
This is straightforward for cubic structures. One sets the
cubic cell edge, a, to a range of different values and then
conducts a DLS refinement with a fixed a. In this way, one
determines how a particular network can react to positive
or negative pressure. First, the refinements are conducted
in the highest space group consistent with a particular
connectivity of the network. Then, the refinements are
repeated with certain symmetry elements removed, that
is, in lower space groups or with larger unit cells.

A challenging aspect of our calculation is to locate all
the minima of interest. We have focused on finding the
global minimum for each network, but we have frequently
found other minima that give nearly comparable fits. The
way to find the global minimum as well as other minima
is to start the DLS refinement with many different values
of atomic positional coordinates.

For all the results reported in this paper, a consistent
set of weights are used: 1.0 for the M–O distance, 0.07 for
the O–O distance, and 0.04 for the M–M distance. The
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M–O distances are given the highest weight since they
show a very small range of observed values, but the O–O
and M–M distances are given much lower weights since
they show a wide range of observed values (5). The
agreement factor R is defined by

R 5 !o (w ? dd)2

o (w ? d)2 ,

where w is the weight, d is the interatomic distance, and
dd is the difference between a particular distance and its
prescribed distance. The prescribed M–O distance was not
the same for all refinements (Table 1). Instead it was given
a value consistent with the Al to Si ratio most often found
for a particular zeolite. Such prescribed values then facili-
tate direct comparison of our results with experimental
data. However, such comparison is still impeded by the
effect on a of interstitial cations and molecules such as
water. The prescribed O–O distance is always set according

to an ideal MO4 tetrahedron, and the prescribed M–M
distance is always based on an M–O–M angle of 1458.

A potential problem with DLS modeling is that non-
bonded interatomic distances might become unacceptably
short. We might, in fact, anticipate this problem as we
compress a network structure. The DLS software only
calculates the interatomic distances for atom pairs with
prescribed distances. To deal with this problem, we
checked for short nonbonded distances in our solutions. In
fact, this was never found to be an issue for the compression
range we consider in this paper.

RESULTS

The zeolite networks considered in this paper are rho,
analcite (also known as analcime), ZK-5, faujasite, sodalite,
ZSM-39, zeolite A (both ordered and disordered), mela-
nophlogite, paulingite, and linde N. The R vs a plots are
given in all cases, and corresponding angle vs a plots are
given in some cases (Figs. 1–11). The minimum in the plot

TABLE 1
Residuals for Various Refinements

Space # of M–O
Network group a(Å)a variables distances Rb 3 104

Zeolite A Pm3m 12.3560 6 1 3 1.670 11.4/25.4/60.4
Zeolite A P4·m 12.3561 10 1 3 1.670 9.8/24.2/58.7
Zeolite A Fm3c 24.7268 11 2 3 1.670 8.5/18.6/60.5
Zeolite A Fm3c 24.7270 11 1 3 1.730; 1 3 1.610 8.5/18.4/60.5
Rho Im3m 15.0092 5 1 3 1.620 4.0/27.7/58.6
Rho I4·3m 14.8239 10 1 3 1.620 2.8/7.4/25.9
Analcite Ia3d 13.8763 4 1 3 1.647 4.4/51.8/73.2
Analcite I4·3d 13.8743 9 1 3 1.647 4.5/14.4/64.7
Analcite I4132 13.8763 8 2 3 1.647 4.4/44.4/73.2
Faujasite Fd3m 24.8073 10 1 3 1.640 4.2/28.6/41.2
Faujasite F4·3m 24.8081 21 2 3 1.640 3.8/24.1/41.5
Faujasite F4132 24.7944 17 2 3 1.640 3.4/22.5/39.7
Faujasite Fd3 24.7987 18 2 3 1.640 3.1/22.7/39.9
Sodalite P4·3n 8.9882 3 1 3 1.720; 1 3 1.610 5.0/12.9/13.1
Sodalite P23 8.9882 8 1 3 1.720; 1 3 1.610 5.0/12.9/13.1
Sodalite P4·3n 8.9827 3 2 3 1.665 0.0c/12.1/11.8
Sodalite P4·3m 8.9827 5 1 3 1.665 0.0d/16.7/16.4
Sodalite I4·3m 8.9827 2 1 3 1.665 0.0e/16.7/16.4
Sodalite I23 8.9827 4 1 3 1.665 0.0 f/12.1/11.8
ZK-5 Im3m 18.6823 10 1 3 1.620 6.9/23.3/60.5
ZK-5 I4·3m 18.6850 20 2 3 1.620 5.6/18.2/59.7
Paulingite Im3m 35.0267 68 8 3 1.620 5.6/17.6/60.7
Linde N Fd3 37.1348 72 4 3 1.740; 4 3 1.610 9.4/17.5/41.3
Melanophlogite Pm3n 13.7881 9 3 3 1.620 21.6/41.7/140.6
ZSM-39 Fd3m 19.8159 8 3 3 1.600 27.7/71.5/185.5
ZSM-39 F4·3m 19.8181 17 6 3 1.600 26.5/51.8/185.6

a The value of a when a is allowed to vary.
b R value when a is allowed to vary/R value after 2.7% compression/R after 2.7% expansion.
c The exact value of R 3 104 at minimum a is 0.0004.
d The exact value of R 3 104 at minimum a is 0.0001.
e The exact value of R 3 104 at minimum a is 0.0118.
f The exact value of R 3 104 at minimum a is 0.0121.
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FIG. 1. Rho (a) R values in space groups Im3m and I4·3m. M–O–M angles in space groups (b) Im3m and (c) I4·3m.

FIG. 2. Analcite (a) R values in space groups Ia3d, I4·3d, and I4132. M–O–M angles in space groups (b) Ia3d, (c) I4·3d, and (d) I4132.
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is found by actually allowing a to vary during the DLS
refinement. The region to the right of the minimum is
termed the expansion region, and the region to the left of
the minimum is the compression region. The minimum
value of R is an indication of how well regular tetrahedra
can fit together with a given connectivity and M–O–M
angles not far from 1458. The high values of R for both
ZSM-39 and melanophlogite indicate that these frame-
works are under considerable strain relative to the other
networks we have examined (Table 1). Exceptionally low
values of R are found in several variations on the sodalite
structure. The very low R value of sodalite can be obtained
for any prescribed M–O–M angle less than 1608, although

we prescribed 1458 for the M–O–M angle for the results
shown in Table 1 and Fig. 4.

There are several aspects to network flexibility. Low
values of R will promote some flexibility regardless of the
slopes on either side of the minimum in the R vs a plots.
However, we will focus on the slopes in these plots. A
sharply defined minimum is a characteristic of a rigid net-
work, and a broad minimum indicates a flexible network.
Reducing lattice symmetry constraints sometimes, but not
always, results in increased lattice flexibility. This increased
flexibility can be very small (e.g., in faujasite) or it can be
very large as in rho.

Some general trends are well illustrated with zeolite rho.

FIG. 3. Faujasite (a) R values in space groups Fd3m, F4·3m, F4132, and Fd3. M–O–M angles in space groups (b) Fd3m, (c) F4·3m, (d) F4132,
and (e) Fd3.
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FIG. 4. Sodalite (a) R values in space group P4·3n. For R*, the prescribed M–O distance of 1.665 Å is used for both tetrahedral sites. For R,
prescribed distances of 1.61 and 1.72 Å are used. (b) R value in space group P4·3m. One prescribed M–O distance of 1.665 Å is used. (c) R values
in space groups P4·3n and P23. In both cases prescribed distances of 1.61 and 1.72 Å are used. (d) R values in space group P4·3n. This figure is the
same as the graph for R* in Fig. 4a, but it shows the behavior of R in the larger domain of a. (e) M–O–M angles in space group P4·3n. Prescribed
M–O distances of 1.61 and 1.72 Å are used. (f) M–O–M angles in space group P4·3m.

The value of R increases more steeply in the expansion
region than in the compression region (Fig. 1a). Thus, it is
basically easier to compress these networks than to expand
them. However in real materials, compression may be im-
peded by interstitial cations and molecules which are ig-
nored in our calculations. The effect of symmetry is gener-
ally more pronounced on compression than on expansion.
Lowering of symmetry frequently gives a broader mini-
mum; most of this effect is in the compression region.

The primary mechanism of compression in a zeolite is

decreasing M–O–M angles, thereby decreasing M–M dis-
tances. Thus, the trend shown in Fig. 1c is considered the
normal behavior. All three M–O–M angles are in general
decreasing with decreasing a. Deviation from this behavior
occurs as shown in Fig. 1b, where one of the two M–O–M
angles does not decrease with decreasing a in the compres-
sion region. This ‘‘abnormal behavior’’ can be an indirect
result of either the network connectivity or the imposed
lattice symmetry. In the case of rho, the M–O–M angles
behave more normally over the range considered when



7

FIG. 5. Zeolite A (a) R values in space groups Pm3m and P4·3m. M–O–M angles in space groups (b) Pm3m and (c) P4·3m.

FIG. 6. Zeolite A (doubled cell) (a) R values in space group Fm3c. For R* the prescribed M–O distance of 1.67 Å is used for both tetrahedral
sites. For R, prescribed distances of 1.61 and 1.73 Å are used. (b) M–O–M angles in space group Fm3c. Prescribed M–O distances of 1.61 and 1.73
Å are used. (c) M–O–M angles in space group Fm3c. Prescribed M–O distance of 1.67 Å is used for both tetrahedral sites.
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the lattice symmetry constraint is relaxed in space group
I4·3m (Fig. 1c). For other networks such as those repre-
sented by ZK-5 and zeolite A, some reduction of lattice
symmetry does not lead to ‘‘normal’’ behavior.

In the case of analcite, some of the trends mentioned
for rho occur (Fig. 2). Here two lower space groups were
considered. Both result in greater flexibility in the sense
of a broader minimum. In the case of rho, the value of a
for which R reaches a minimum changes significantly when
the symmetry is reduced (Fig. 1a). However, there is essen-

tially no change in the position of this minimum as the
symmetry is reduced for analcite (Fig. 2a).

The results for faujasite, sodalite, and zeolite A represent
counter examples (Figs. 3–5). Flexibility is not much in-
creased on considering lower symmetry cubic space groups
for faujasite and zeolite A. The R vs a curves for faujasite
are rather similar in space groups Fd3m, F4·3m, F4132, and
Fd3. The M–O–M angles vs a plots are also similar for
space groups Fd3m, F4132, and Fd3. However, reducing
the symmetry of the faujasite network from Fd3m to F4·3m

FIG. 7. ZK-5 (a) R values in space groups Im3m and I4·3m. M–O–M angles in space groups (b) Im3m and (c) I4·3m.

FIG. 8. R values for melanophlogite in space group Pm3n. FIG. 9. R values for linde N in space group Fd3.
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actually causes abnormal behavior (Fig. 3c). There are now
seven different M–O–M angles which are all signicantly
different in the compression region but these reduce to
just the usual four different M–O–M angles in the expan-
sion region.

Both zeolite A and sodalite exist in ordered and disor-
dered variations. That is, the tetrahedra can be all symme-
try related or there can be two symmetry unrelated tetrahe-
dra; one of these might be the Al site and the other the
Si site. Thus in the ordered variation, we would have tetra-

hedra of two different sizes. The ordering causes a doubling
of the unit cell size in zeolite A, but there is no increase
in the size of the sodalite unit cell with ordering.

In the case of sodalite, an extremely low R value occurs
at the minimum in the R vs a plot (Table 1 and Fig. 4).
This occurs in space groups P4·3m, P4·3n, I4·3m, and I23.
Over the region shown in Fig. 4a, the increase in R is nearly
symmetric with respect to the minimum. However, at larger
values of a (Fig. 4d), the usual steeper slope is found in
the expansion region. When the tetrahedra are made dif-

FIG. 10. R values for ZSM-39 in space groups Fd3m and F4·3m. FIG. 11. R values for paulingite in space group Im3m.

FIG. 12. ZK-5 (a) R values in space groups Im3m when the global minimum is not achieved at every a. (b) M–O–M angles in space group
Im3m related to Fig. 12a. (c) R values in space group Im3m when the global minimum is not achieved at every a (this solution is different from
the solution given in Fig. 12a). (d) M–O–M angles in space group Im3m related to Fig. 12c.
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ferent in size, the framework is strained and higher R
values are obtained. Lowering the space group to P23
does not result in lower R values or more flexibility. The
behavior of M–O–M angles with changing a is normal
(Figs. 4e and 4f).

Zeolite A was refined in four different ways (Table 1
and Figs. 5 and 6). The R value at the minimum is rather
high in the ideal structure with the 12.36 Å cell where
there can be no ordering of Al and Si on tetrahedral sites.
Lowering the symmetry from Pm3m to P4·3m decreases
the R at the minimum slightly from 11.4 3 1024 to
9.8 3 1024, but there is essentially no increase in flexibility.
Doubling of the cell edge of zeolite A is associated with
ordering of Al and Si as there are now two crystallographi-
cally distinct tetrahedral sites. Refinements in this structure
give a lower R (8.5 3 1024) regardless of whether the M–O
distances at the two sites are the same or different. This
behavior is then very different than that found for sodalite.
The value of a (or 2a) for which R is a minimum for
zeolite A shows essentially no change in response to lattice
symmetry constraints or ordering of Al and Si. Plots of
M–O–M angles vs a show abnormal behavior regardless
of ordering or space group (Figs. 5b, 5c, 6b, and 6c).

The flexibility for ZK-5 (Fig. 7) is rather similar to that
of analcite in space group I4·3d. However, whereas the
M–O–M angles in analcite behave normally, this behavior
is abnormal in ZK-5. Reducing the symmetry of ZK-5
from space group Im3m to I4·3m increases the flexibility
somewhat, but the abnormal behavior of the M–O–M
angles remains. Figures 8–11 shows the behavior of mela-
nophlogite, linde N, ZSM-39, and paulingite.

Figure 12 illustrates the type of results that can be ob-
tained if a global minimum is not obtained at every value
of a. The R vs a plot is not as smooth as usual, but the
irregularities in the M–O–M plots are far more dramatic.
We conclude that in ZK-5 at least four good solutions exist
in space group Im3m. These are evident in compression
but not in expansion. In the compression region, normal
behavior for M–O–M angles occurs for several solutions

but not for the solution giving the lowest R values. The
fact that there are several good solutions is another aspect
of flexibility. The real structure could in principle fluctuate
among these solutions. Finding several good solutions is
not unique to ZK-5. This is our general finding for the
compression region of the networks we examined.

In addition to networks based on tetrahedra only, we
have examined one structure with a mixture of tetrahedra
and octahedra. The structure is that of many pyrophos-
phates such as ZrP2O7 . The polyhedra share corners only,
and all corners are shared. The structure of the high-tem-
perature form of this material is cubic with P–O–P angles
constrained by the space group (Pa3) to be 1808 (10). We
have previously presented some DLS calculations on this
structure, but they dealt with a frustration issue rather than
with flexibility (11). In the results we present here, the
superstructure which can exist at lower temperatures is
not considered.

The minimum R value for the ZrP2O7 network in its
ideal symmetry (space group Pa3) is significantly higher
than those for any of the zeolites we considered. Symmetry
elements were removed in two different ways: Pa3 to Pca21

to Pc to P1 (Fig. 13a) and Pa3 to P212121 to P21 to P1
(Fig. 13b). Cell edges were constrained to be equal and cell
angles were fixed at 908. Nonetheless, dramatic decreases in
R occurred (Fig. 13). Thus, this network becomes much
more flexible as symmetry constraints are removed. How-
ever, R values of ZrP2O7 remain high relative to those
of zeolites, indicating a more rigid network. As generally
occurs in the zeolite networks, the R vs a curves for ZrP2O7

also overlap in the expansion region.

DISCUSSION

All the networks we explore here are known to exist in
real materials. However, our goal at this time is not to
model the behavior of real materials. Rather, we are at-
tempting to understand aspects of three-dimensional net-
works from the point of view of their geometry. In particu-

FIG. 13. ZrP2O7 (a) R values in space groups Pa3, Pca21 , Pc, and P1. (b) R values in space groups Pa3, P212121 , P21 , and P1.
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lar, we wish to understand flexibility of networks based on
tetrahedra and octahedra which share corners only. Once
we are convinced that we understand the geometric rela-
tionships of such networks, we can apply this understand-
ing to real materials. Our investigation is only a beginning
with this approach. There are many other networks that
could be examined. We have focused on the global minima
for each network, but we know that there are generally
several other good solutions. Furthermore, the flexibility
of all of these networks should be explored in noncubic
space groups and with larger unit cells.

The simplest cubic network based on tetrahedra sharing
corners could be regarded as cristobalite in its ideal struc-
ture. The connectivity of this structure forces 1808 Si–O–Si
bond angles if the tetrahedra are perfectly regular and the
lattice symmetry is constrained to be cubic. In cubic b-
cristobalite, the 1808 Si–O–Si bond angles are assumed to
be bent in a disordered fashion. In noncubic a-cristobalite,
bending of the Si–O–Si angle is possible while maintaining
regular tetrahedra. In all of the networks we have modeled
(Table 1), the M–O–M angles approach 1808 as they are
stretched. However, only the network represented by cris-
tobalite can fully achieve 1808 M–O–M bond angles with
regular tetrahedra.

As has been noted previously (5), the network repre-
sented by rho is very flexible if the ideal symmetry is re-
laxed. The sodalite network is also very flexible even in

the highest symmetry consistent with its connectivity. How-
ever, a factor not previously noted is that this flexibility is
significantly decreased if tetrahedra of two different sizes
are used. For analcite, high flexibility requires relaxing the
ideal symmetry in a way which apparently has not been
observed. Our results suggest that high pressure should
induce lower symmetry structures for compounds with the
analcite network.
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